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Abstract

We obtain the exact renormalization map and plots of Lee—Yang and Fisher
zeros distributions for Potts models on a number of hierarchical lattices: the
diamond hierarchical lattice, a lattice we call spider web, the Sierpinski gasket
and cylinders. Such models are only examples among those we can study in
the general framework of hierarchical lattices, developed in a previous paper.

PACS numbers: 64.60.—A, 64.60.ae, 64.60.al

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Spin models on hierarchical lattices are a large class of exactly soluble models that have
been considered first as approximations to regular lattices [1-3] and then as examples of
lattices invariant under a real-space renormalization procedure [4—7]. The renormalization
group action for such models is therefore exact and the study of its dynamics provides some
interesting results that can be useful in studying the renormalization group action in more
general cases. In this paper we consider some examples of Potts models on hierarchical
lattices, namely the diamond hierarchical lattice (section 3), the spider web (section 4), the
Sierpinski gasket (section 5) and cylinders (section 6). Some of these lattices were among
the first examples of hierarchical lattices to be introduced and studied (see e.g. [8—12]),
while, during the preparation of this paper, the lattice we call spider web has become a focus
of interest among complex network researchers under the name of Apollonian network; a
number of studies of its structural and thermodynamical properties appeared in recent years
(see, e.g., [13—15]). The purpose of this paper is, however, to present all such models with
a consistent and uniform method which also allows for the presence of an external magnetic
field. This approach has been presented in a previous paper [16] and can be applied in full
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generality to all hierarchical lattices. For each model we will write the exact renormalization
group generator and provide numerical results for the distribution of Lee—Yang and Fisher
zeros. Such results are obtained using techniques which we explain in section 2 and in the
appendices. We also report some observations which arise quite naturally from the analysis of
the aforementioned models and also provide some new results. In particular, we observe that
Lee—Yang zeros responsible for the infinite susceptibility of the Ising model on the diamond
hierarchical lattice in the paramagnetic phase are given by interactions that are only finitely
renormalizable. Moreover, we are able to write the exact renormalization map associated
with the Potts model on a Sierpinski gasket for all values of g. We refer the interested reader
to [16] for a detailed treatment of Potts models on hierarchical lattices; what follows in this
introduction is an attempt to summarize consistently all basic concepts we need in this paper.

Hierarchical lattices are infinite lattices in which we allow multiple-spin connections and
that are obtained by iterating a decoration procedure on a finite lattice; this procedure amounts
to substituting each edge of a lattice with a given block of spins and edges (see, e.g., figures 1,
5 and 8). In [16] we showed that, for such models, we can define a renormalization map that
acts as a polynomial map on the complex vector space of the Boltzmann weights exp(—pJ)
associated with the local interactions J. We observe that a different normalization of the
Boltzmann weights or, equivalently, a different choice of zero of energies, does not change the
thermodynamics of the models. Therefore, we argue that the space of Boltzmann weights can
be considered as a projective space P" and the renormalization map will act on such a projective
space as a rational map. In general, if we consider models with several types of interactions,
then the renormalization map will act on the Cartesian product of several projective spaces
(i.e a so-called multiprojective space) that we call dynamical space. We define physical space
to be the space of Boltzmann weights associated with interactions given by pair interactions
and (possibly) by coupling with an external magnetic field. In general, the physical space
is a submanifold of the dynamical space which is not preserved by the renormalization map.
This amounts to the well-known fact that the renormalization of pair interactions introduces
new multiple-spin interactions. Hierarchical lattices are such that all possible multiple-spin
interactions that arise from the renormalization process form a finite-dimensional space; in
this sense we say that hierarchical lattices are exactly renormalizable.

2. Numerical approaches

In the following sections we will perform a numerical study of rational maps that generate the
renormalization group of some examples of hierarchical lattices. We are, in fact, interested
in finding the distribution of Lee—Yang and Fisher zeros for such models. Given the
renormalization map of the model, one method of obtaining numerically such distributions
is to find all basins of attraction of stable fixed points of the map; the boundary of such
regions is going to be the unstable set for the renormalization map (i.e., the so-called Julia
set) and phase transitions of the model will appear for interactions belonging to such a set
(see appendix A.1 for more details). A second approach, in some sense more straightforward,
proceeds by computing an approximation of a real function called the Green’s function. This
function is a purely dynamical object and is related to the free energy of the model the map
is associated with; in particular we expect the two functions to have the same domain of
analyticity (although this fact has been formally proved only for some cases). Once we obtain
the numerical approximation to the Green’s function, applying the Laplacean differential
operator yields the density of the measure supported on the Lee—Yang and Fisher zeros of the
model (see appendix A.2 for details).
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As we pointed out in the introduction, the renormalization group action on Boltzmann
weights is generated by a rational map on a multiprojective space .# called dynamical space
which contains all multiple-spin interactions that can be generated by the renormalization
process. We will often consider a submanifold &2 that we call physical space. This
submanifold is given by Boltzmann weights associated with interaction that are induced
by pair interactions and possibly an external magnetic field. Let us define the pair interactions,
i.e. let Jg be the energy given to two parallel neighbouring spins and Jy the energy associated
with two neighbouring spins that are in different states. The Boltzmann weights associated
with the corresponding energies will be denoted by [z : z4] and belong to the one-dimensional
complex projective space P'. A magnetic field, if present, will assign energy H, to one special
state among the g Potts states and energy H, to all other states. The Boltzmann weights
associated with the corresponding energies will be denoted by [A, : h ] € P'.

For each hierarchical lattice we can therefore define a map from P! x P! — & c .#
that gives projective coordinates to 2. The pair interaction Boltzmann weights will belong to
the first P! factor and the magnetic field weight to the second P! factor. We are now going to
define standard local charts (coordinates) on each P! factor; all numerical computations will
be performed in one of such charts. Note that all the coordinates we are going to define are
just standard (inhomogeneous) charts on the projective line P'.

Definition 2.1. We call standard interaction coordinates the coordinate chart of P' given by
¢ = zs/za = exp(—=B(Js — Ja)) (for za # 0).

When dealing with zero-temperature phase transitions we will need to consider the inverse
chart, 1/¢ (for zs # 0); we will call such chart inverse interaction coordinates.

Note that the standard interaction coordinates could be obtained by setting J3 = 0 and
considering the Boltzmann weights ¢ corresponding to such choice of zero of energies. In
this sense we call them sfandard. In such coordinates, ¢ = 0 and { = oo are respectively
the antiferromagnetic and ferromagnetic points, while { = 1 is the paramagnetic point. The
latter is fixed by all renormalization maps, while the ferromagnetic point ({ = o0) is fixed
whenever the hierarchical lattice is connected; the antiferromagnetic point is usually mapped
to the ferromagnetic point by the RG map.

Definition 2.2. We call standard field coordinates the coordinate h = h,/ h_ = exp(—B(H, —
H)).

Again, the standard field coordinates can be obtained as the Boltzmann weights associated
with the choice H, = 0. In the standard field coordinates, &~ = 1 corresponds to the case
with the zero field, 7 = oo corresponds to the case of an infinite field and 2 = 0 is when the
privileged state costs infinite energy and it is therefore never assumed.

3. Diamond hierarchical lattices

Diamond hierarchical lattices (DHLs) have been the first hierarchical lattices to be investigated
using tools from complex dynamics [8]; they are lattices on a standard graph, and they can be
obtained by iterating the decoration procedure illustrated in figure 1. Recall that we define the
interaction as J; if two neighbouring spins are in the same state and J; if they are in different
states. For this lattice the dynamical variables with no magnetic field are the Boltzmann
weights [z_ @ z5] = [zs : zd] € P! relative to the states of two neighbouring spins

z =exp(—pJ;) same state

zg = exp(—pBJq) different states.
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r I 7

Figure 1. Decoration generating DHL,;, (left) with some iterations of the decoration procedure for
DHL,; on a starting graph I" (right). The hierarchical lattice DHL,, is the limit graph that we obtain
by indefinitely iterating the decoration procedure.

In this case the physical space of the model without an external field coincides with the
dynamical space. As explained in [16], the renormalized variables Z_ and Z; are given by
the conditional partition functions obtained by fixing the two external vertices to be either
in the same state (for 2 ) or in different states (for 27) and then summing over all possible
configurations of the internal vertices. By construction (see [16], appendix A), the partition
functions are given by the bth power of the partition function of just one of the b branches,
which is extremely easy to compute, as we have only one internal spin:

e for Z_, the two external spins are in the same state; the internal spin can be

in the same state of the external spins, in this case we obtain the factor zi;
in any of the other (¢ — 1) states, giving zé.

for %, the internal spin can be

in either state of the two external spins, giving twice the factor z_ - zj.

in any of the other (¢ — 2) states, giving again zé.

The map can thus be written as

Z =(2+@q-1-2) (1a)

Z=(2-z, m+@q-2-2) (1b)

Forevery b the map has a fixed pointat [1 : 1] (paramagnetic point) and at[1 : O] (ferromagnetic
point). Another fixed point appears when b is odd at [—1 : 1]. The fixed point [1 : 1] is always
superattracting (i.e. the map has a zero derivative at the fixed point), while the ferromagnetic
fixed point is superattracting only if b > 1, therefore excluding the one-dimensional chain
case. Thus, in all other cases, and for all values of g, we expect a phase transition at a finite
temperature, since basins of attraction of an attracting fixed point of a rational map always
contain a neighbourhood of the fixed point. In figure 2, we show the aforementioned basins
of attraction of the ferromagnetic and paramagnetic fixed point for various values of b and q.

3.1. Magnetic field

As explained in the previous paper it is possible to deal in a completely analogous way with
an applied magnetic field; corresponding Boltzmann weights will appear as parameters of
the renormalization map. In this case the dynamical variables are the Boltzmann weights
[zm I Za] € P? relative to the states of two neighbouring spins according to the
following rules:

4



J. Phys. A: Math. Theor. 42 (2009) 095002

J De Simoi

Figure 2. Standard interaction coordinates: basins of attraction of the paramagnetic fixed point
(dark shade) and the ferromagnetic one (light shade) for the DHL for various values of b and g;
rows have respectively b = 2, 4, 8, 16, and columns have g = 2, 3, 4.

Now given Js, Jy4

Z

Z

m

s

same state (special)

different states (one special)

same state (not special)

different states (not special).
H,, H_ we can define the physical space as given by
exp(—B(Js + 2H,)) zg =exp(—B(Ja+ H,+ H))
exp(—p(Js +2H)) zg = exp(—B(Ja +2H)).

@)
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Figure 3. Standard field coordinates: Lee—Yang zeros of the diamond hierarchical lattice with
b = 2; the centre of both figures is z. Left: zeros in the real ferromagnetic phase; right: the
anomalous zeros for the supposedly paramagnetic phase.

The renormalization map is given in (3a)—(3d) and is obtained in the same way as for (1a)—(1b),
but also considering the interaction of the internal spin with the magnetic field

o= (he-2+(@=1)h,-2) (3a)
Za=(hy Zm-2a+h, 28 20+ (q—2)-h, -28-2)" (3b)
Zo=(ha- 2 +h, 24 -2 h,-2) ()
= (hy -2 +2-h zm -+ (q—3)-h,-2). (3d)

The renormalization map does not preserve the physical space, i.e. the image of (2) (that is, in
general, a submanifold of codimension 1) unless ¢ = 2. In fact, in such a case the dynamical
space is given by [za : zs : z.] € P? and the map given by (2) is surjective. One could,
in principle, write the renormalization map in terms of Boltzmann weights associated with
Js, Ja, Hy, H_ (see, e.g., [9, 10]); however, the map obtained in such variables is not rational
(since it involves square roots) and its analysis is not as straightforward as it would be on the
dynamical space. In any case it is convenient to perform the analysis in the dynamical space
and then restrict to the physical space to obtain plots and thermodynamical quantities.

One can compute with good approximation the Green’s function of the renormalization
map and look for phase transitions in the magnetic field part of the dynamical space. Looking
just at the Ising case, with no surprise we find the full Lee—Yang circle for the ferromagnetic
phase, and we obtain an anomalous plot for the supposedly paramagnetic phase (figure 3
shows the b = 2 case). The anomalous plot illustrates two interesting facts. The first (proved
in [9]) is that zeros of the partition function do accumulate on the positive real axis even
in the supposedly paramagnetic phase, i.e. the system exhibits infinite susceptibility in the
paramagnetic phase, which therefore is more appropriately called the critical phase. The
critical phase nevertheless exhibits paramagnetic behaviour (this is also proved in [9]); in
fact, we report in figure 4 the numerical data for the spontaneous magnetization. The second
interesting fact to note is that points that are accumulating towards the positive real axis in
the critical phase are not ordinary zeros of the partition function, but are pre-images of the
so-called indeterminacy set. In fact, the anomalous zeros in figure 3 on the right can be seen
as xs that decrease in size as they become dense, whereas the regular zeros in figure 3 on the
left form a solid line. The indeterminacy set is the set of points on which the renormalization
map is not defined, i.e. the points that would map to all Boltzmann weights equal to 0 under
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3

Figure 4. Spontaneous magnetization for the diamond hierarchical model (b = 2). The horizontal
axis corresponds to real values of z, on the y-axis we have spontaneous magnetization (in arbitrary
units). We note the presence of the three phases: antiferromagnetic, critical (paramagnetic) and
ferromagnetic.

A AAA

Figure 5. Decoration for the spider web along with some iterations on a basic hypergraph.

the renormalization map (see [16]). Points accumulating on the positive real axis in figure 3
correspond, therefore, to interactions that are only finitely renormalizable. Such points are in
some sense anomalous from the points of view of both dynamics and physics, and it would be
quite interesting to understand if this connection is more than just a mere coincidence.

4. Spider web

The spider web lattice is obtained by iterating the decoration & shown in figure 5 infinitely
many times; as the picture illustrates this lattice is based on what is called a 3-uniform
hypergraph. In this case the dynamical variables are the Boltzmann weights [zm 1% zg] € P?
relative to the states of three neighbouring spins

Z_. ~same state

Zm  two in the same state, third in different state

zg  three different states.

We can consider pair interactions given by J;, J4 on each edge of each triangle in the following
way:

2, =exp(=p-3J) zp = exp(—=B(Js +2J4)) zg =exp(=p - 3Ja), “)

7
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which follows by giving to each dynamical variable the Boltzmann weight associated with the
energy of the pair interactions in the corresponding configuration. In this case, each side of
each triangle (apart from the three sides of the initial hypergraph) is counted twice, as each
side is shared by two 3-edges. Since this multiplicity is uniform for (almost) all sides, this is
not an issue; the renormalization transformation is thus easily constructed in the dynamical
variables:

e for Z _ the internal spin can be
— in the same state as the external spins, giving z; ;
— in any of the other (¢ — 1) states, giving zgj;

o for 2 the internal spin can be

— in the state that two of the external spins share, giving z__ - 22

Bj?
— in the state of the lone external spin, giving zg’j;
— in any of the other (¢ — 2) states, giving zg - zé ;
o for Zf the internal spin can be
— in either state of the external spins, giving three times zéj - 28
— in any of the other (¢ — 3) states, giving zg.
The map is therefore

Z. =2 +@-1)-z) (5a)
Yo=1_ i+ q—2) 23 (5b)
K=3-2 5+@-3) -3 (5¢)

Note that, in general, the renormalization map does not preserve the physical space
submanifold. Once more, this amounts to the well-known fact that in general renormalizing
pair interactions gives rise to interactions that cannot be written as pair interactions. This
did not happen in the previous case because the DHL is naturally defined using only 2-edges.
Note, moreover, that if ¢ = 2, the equation for zg uncouples from the first two and we have that
the projective space generated by the first two variables is invariant under the renormalization
map. This is not unexpected since, if ¢ = 2, there cannot be a configuration for which all
three spins are in different states. As a matter of fact, it is interesting to compute the restriction
of the map in such a case, as we recover a map of the quadratic family best known as the
cauliflower (see for example [17])

2 . %
r=

=

=2
3 3 3
2 +zm 7 +1

2
— = = —n+1.
22, te) N+l LA

T
S8

We can recognize the cauliflower in the physical variables in the leftmost picture of
figure 6. From the map we easily see that the paramagnetic point [1 : 1] is a parabolic fixed
point (i.e. its multiplier is a root of unity.) and the convergence of the Green’s function in
its neighbourhood is rather slow. The same slow convergence rate can also be noted for all
pre-images of this point. All points inside the cauliflower (therefore all antiferromagnetic
interactions) will converge to the paramagnetic fixed point, while all points outside will
converge to the ferromagnetic fixed point at infinity. This could be explained by the fact
that frustration prevents the formation of an antiferromagnetic phase. For ¢ = 3 the map

8
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¢
"

3

Figure 6. Standard interaction chart: Fisher zeros for ¢ = 2, 3, 4; as we change ¢ we can track
the evolution of the antiferromagnetic phase.

acts on the full P>, This map has one indeterminacy point at [0 : 0 : 1], represented by the
cross at the centre of the appropriate plot in figure 6. In fact, this point corresponds to an
interaction that allows only for the configuration given by all three spins in different states.
It is easy to check (see figure 5) that if ¢ = 3 it is not possible to have a configuration of
spins on the spider web satisfying this requirement. To this extent, this interaction is not
renormalizable. The newborn region that surrounds the indeterminacy point is mapped to the
basin of attraction of the ferromagnetic point oo, indicating that the behaviour of this phase
could be antiferromagnetic. Considering g = 4 or higher we observe that the antiferromagnetic
phase disappears.

It is straightforward to write the renormalization group map in the presence of an external
magnetic field. However, for the sake of clarity, we restrict ourselves to the case g = 2; the
dynamical variables are given by [zm DIl Zm zm] e P

Fo=7 ho+Zhh, (6a)
Yo =Zm 2 hat w25 by (6b)
=22 hatze -z, h (6¢)
¥ =z -hy+7_ - h. (6d)

Note that the renormalization map is symmetric for the exchange of the special state
with the other state. In figure 7, we provide a plot of the spontaneous magnetization versus
interaction that confirms the presence of the paramagnetic phase for all antiferromagnetic
interactions and of the ferromagnetic phase for all ferromagnetic interactions. As a remark,
note that we could also consider spider webs of higher dimensions (using tetrahedra or higher-
dimensional simplices); in this case, however, the two-dimensional sides will have different
multiplicities and one has to use a more complicated machinery to obtain the results (see [16],
example 4.4).

5. Sierpinski gasket

We can generate the Sierpinski gasket by infinite iterations of the decoration shown in
figure 8.

The dynamical and physical spaces are the same as in section 4; in this case each side of
each triangle is counted just once, so we have no multiplicity issues. We record for the sake

9
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Figure 7. Ising model on the spider web: spontaneous magnetization versus z variable for z € R
for various values of interaction. Note that the transition is rather gentle; this is due to the fact that
the density of zeros is low near the transition point.

Vi
V4 Vs Vo T 9T 29T

Figure 8. Some iterations of the decoration which generates the Sierpinski gasket.

of completeness the renormalization map for any value of g:

Z,=7-@=3@q-2@—-D+3 252 - (¢ =2(g—D+z,- (g = D
+3.2223:(q—2D(@—-D+3-22 - (q—D+3-2 25 (q—D+2’

(Ta)

Zo=2%-q-H@-3@q-)+(F+2-%7) ¢ -3 -2

+(2 255 +20 )@ -G -D+3- 2525 (—3)(q—2)

+(zp-3+2-2029) (@ —D+ (2 zp- g +2 20 5 +2-20) (g — 2)

(2 g 225 0)@ - D+ (2 25 5 +23) (g —2)

+(2 2z )@ -+ (g -+ (2 +z,20)

(22, ) L e (7b)
Z=z-q-5q—-Hg-3)+3(z7+2 25-7)) (g —H(q —3)

+3.ZE3.Z§.(q_4)(q—3)+3(z§+2-zEj-z§+3-z§j-zg)(q—3)

+3(zp-23+2-2028)(q =3 +3(z, 5 +2-20 - 7) (g — 3)

+Z§j'(q—3)+z§+9-z§j-zg+6-zm'zﬁj-zg+8-z;+3-zm-zé. (7c)

10
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Once more, if ¢ = 2, the third equation decouples and again we obtain a map defined on a P':
¥ =4t (8a)

Ze=2p -G zp+z,) (8D)

This is equation 3.2 in [11] or equation 14 in [12]. The exact and numerical results
(figure 9) tell us that we have no phase transitions at a finite temperature; we have zeros
in the thermodynamical limit only for 7 = 0 in the physical domain. The paramagnetic fixed
point is attracting for all points in the positive real axis, so that we cannot have a ferromagnetic
phase. This behaviour is similar to that of the linear chain. Again it is easy but tedious to
compute the map for the general case in the presence of an external magnetic field; we will
give here the exact expression for the Ising case

Yo =022 4312, (2am- 22) +3 - h> - (23 2g) + 1 22 a)

3
B m b2 zm B (422 2 20)

+heh? (- 2m+2- 25 2m) + 1 2 2 (90)
Pa=h> 22 zmth (42 25 2 28)

+12h, - (28 Zew+ 2 2 28) + 1D 2 2 9c)
Poy=h 22 43 h’ (20 z2) +3 B2k, (22 22) + B -z (9d)

Note that, once again, we have complete symmetry for exchange of the special state with the
other. Since we have no ferromagnetic phase, the Lee—Yang zeros do not accumulate to the
positive real axis, as shown in figure 10. As for the spider web, also in this case it is easy to
generalize the construction to higher-dimensional gaskets. Note that, in this case, multiplicity
is not an issue since any two-dimensional side will belong to only one simplex.

6. Cylinders

In this final section we provide an example of non-uniform lattices, i.e. lattices in which several
types of edges are used. We present a lattice obtained as the quotient of the square lattice
7% with a translation. Such lattices can be regarded as being generated by decorations in
figures 11 and 12. For these lattices, a very special case of non-uniform lattices, we recover
results that can be found in a completely equivalent way using the transfer matrix method; in
this framework the transfer matrix is indeed the renormalization map.

In each one of these lattices we have two types of edges. One is a regular 2-edge and the
other is respectively a 3, 4 or 6-edge. Consider, for instance, the simplest lattice in figure 11,
i.e. the 3-skewed cylinder and let g = 2. The dynamical variables are the Boltzmann weights
(20 Zp) [20 1 28] € P' x P'. The renormalization map will leave pair interactions (i.e. the
second factor) invariant and will induce a 3-spin interaction on the first factor according to the
following formula

Qfm=Z,E-Z:j+3~zg(zi'z§+zi-zg)+zm-z§ (10a)
Y=z 20 +3 g0t A D) oL (10b)
Z, =z, (10c)
% =z, (10d)

11
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Jesssss

5

«

Figure 9. Fisher zeros for the Sierpinski gasket. The left column shows zeros in the interaction
coordinates, while the right column shows zeros for the inverse interaction coordinates; the three
rows correspond to different g = 2, 3, 4.

i

-

A

Figure 10. Standard field coordinates: Lee—Yang zeros for the Sierpinski gasket. The picture is
for z = 1.3 but qualitatively depicts all ferromagnetic interactions. As we expected, zeros do not
accumulate on the real positive axis, and their structure is quite complicated as it is made of pieces
with genuine zeros and pieces with points of the indeterminacy set.
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r. o

Figure 11. Decorations that generate the skewed cylinders Z?/r - Z(1,1) for r = 3,4,6,
respectively. The cylinders are obtained by substituting infinitely many times the triangle (square,
hexagon) with the corresponding decoration.

A

Figure 12. Decorations that generate the cylinders Z?/r - Z(1, 0) for r = 3, 4, 6, respectively. The
cylinders are obtained by substituting infinitely many times the triangle (square, hexagon) with the
corresponding decoration.

Note that we can arrange the map as a linear map in the order-3 variables, parametric in the
order-2 variables

<9;) 4z 3(mtlg) (zm>
= 4 2, 2 _4 4 2, 2 .4 ’
Zp (Zm'ZE+Zm'ZE) 3(Zm'ZE+Zm'Z)

whose corresponding matrix is the transfer matrix of the system. Since we are dealing with a
projective space we can factor out the polynomial z;‘j : ZEZ + znzj : zg af znzj + zg # 0), and defining

B &

6 6
" +z
. = m B
a([Zm : ZE]) = (Z4 ) ZE‘2+Z§j ‘Zg)’

m

we can rewrite the matrix in the much simpler form

a 3
1 3)°
Computing a in the standard interaction coordinates ¢ (for { # i), we obtain

;<z_m) Y o+l -+
¢ z3 e+ 2

We can compute the Green’s function in the variable ¢ and obtain the set depicted in
figure 13 for the non-analyticity locus.

Note that in this case the matrix of degrees does not satisfy the Perron—Frobenius
hypothesis of appendix A.2; in fact, the matrix is parabolic, i.e. it is not diagonalizable,
with generalized eigenvalue 1. Therefore, we have to use a variation of the argument that we
provided; the convergence of the Green’s function in this case is much slower (logarithmic)
and the plot looks less definite. Indeed, one can obtain the set in an analytical way; in fact, one
can easily check that in this case the appropriate version of the Green’s function is proportional
to the logarithm of the norm of the maximal eigenvalue of the matrix. The non-analyticity
locus is therefore contained in the set of points such that we have at least two eigenvalues with
maximum norm. Such a condition is easily expressed in an analytic form and the resulting set
agrees with the numerical picture.
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Figure 13. Standard interaction coordinates: the set of non-analyticity points of the Green’s
function; it looks like a subset of the Fisher zero set of the 72 lattice.
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Appendix. Numerical study of rational maps

A.l. Fixed points and basins of attraction

In cases where it is easy to locate all stable fixed points of the map (e.g. for maps on the
Riemann sphere ©), it is possible to obtain their basins of attraction in the following way.
First we find a stable neighbourhood of each fixed point, i.e. a ball of small radius such that
its image is contained in itself. Having fixed a maximum number of iterations, we discretize
a bounded region of the physical space in a finite number of pixels, and for each pixel, we
apply iteratively the map starting from the centre of the pixel until we end up in one of the
aforementioned stable neighbourhoods. If this happens in the given maximum number of
iterations, we declare the initial pixel to belong to the attracting basin of the corresponding
fixed point and we colour it according to the speed of convergence (the faster the lighter) and
to which fixed point it is attracted to. If the point does not fall in any neighbourhood in the
given number of iterations, it is coloured black.

Pictures obtained in such a way show the unstable set of the map as the boundary of the
basins of attraction; moreover, showing which points are attracted to which fixed points, the
pictures provide basic information on the asymptotic dynamics of the RG map.

A.2. Green’s function
We recall that a rational map on a multiprojective space .# lifts to a polynomial map that is
separately homogeneous in each factor, i.e.
[iPx o x PP P ox .o x P
201, 27D > (FPED, 2L IFP D, ),
where each F® is such that
. di .
F(l)(VIZ(l), o UpZ(p)) — 1_[ vj/F(l)(Z(l)’ o, Z(P))
J
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and dj. is the degree of F®) with respect to /). Considering d;. as an integer-valued matrix
D, we can find its eigenvalues; in good cases we expect (via the Perron—Frobenius theorem) a
simple real maximal eigenvalue p, > 1 such that its associated (normalized) eigenvector w,
has all non-negative coordinates. In such cases we can define the Green’s function

n

1
4 = lim —(w,, log| F"(z", ..., z")]).

Note the similarity of this function with the free energy of the system. In fact, for hierarchical
lattices we have the following expression for the free energy:

1
F = lim ———log|| Z5(F"(z"", ..., 2P,
an#edgesrn gl Zo(F" (z 2P

where 2 is the partition function of the starting hypergraph. Moreover, if we call §; the
number of edges of type i that belong to the starting hypergraph, we can express the total
number of edges of the nth approximation to the hierarchical lattice as ), j 5,-(D”);. For
generic 8, this expression is obviously asymptotic to p}. As explained in [16] there are results
that state that the two functions ¢ and .% are equal in the uniform case with mild assumptions
on %, but there is no general result for the non-uniform case. Moreover note that in the
uniform case the matrix D is just a number, therefore most of the computations are made
easier.

We remark that we can exploit the homogeneous nature of the map to obtain a clever (and
geometrically converging) way of numerically computing the Green’s function. In fact, let us
define the sequence z,, of normalized iterates and the sequence A,, of the corresponding norms
as follows:

Ay = 12911, 2y =20/
= FOED PP gl = FOER D) [,
we can write
IFOGED, . 2Py = 1—[ (Ag)d} JFOED, )| = 'H()‘é)d}'
J J
Therefore, iterating the previous expression we get

n—1 ; .
. . . in - gn=1_ glk+l
I @ @i = - [T TT ()%=

k=0 ig-i,—1

Taking the logarithm and considering logA! as components of a vector logA, in a p-
dimensional space and again d; as elements of the p x p-matrix D, we obtain the following
expression:

log|l[(FM)({z®})|| = log A, + Dlog A,_; + D*log Ay_s + - - - + D" log Ao.

When we compute the scalar product with the maximal eigenvector of D we are projecting on
the corresponding eigenspace, therefore the expression can be rewritten as

(wy, log \,) + (wy, DlogA,—1) + -+ - + (w4, D" log Ag)
= (wq, log \y) + ps(wy, log Ay_1) + - - - + pi {(wy, log Ag).
Dividing by the normalization term we get the following expression for the Green’s function:
N
’ l AI’l
@ — fim 3 W 108 M)
N=eo n=0 pﬁ
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that is geometrically convergent (if p, > 1) and can be computed numerically with a very
good approximation as the A, are bounded. As a last remark note that in the uniform case the
expression reduces to

N
log A,
¥4 = lim 8

N—oo dan
n=0

)

where d is the degree of the map and A,,’s are just numbers.
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